Help to solve this integral

\(\displaystyle \int_{0}^{1}f(x)dx\)

\(\displaystyle f(x) = 1 + \cfrac{x}{x+\cfrac{x^2}{x^2+\cfrac{x^3}{x^3+\cfrac{x^4}{...}}}}\)

Board index **‹** Computation of Integrals **‹** integral
## integral

Help to solve this integral

\(\displaystyle \int_{0}^{1}f(x)dx\)

\(\displaystyle f(x) = 1 + \cfrac{x}{x+\cfrac{x^2}{x^2+\cfrac{x^3}{x^3+\cfrac{x^4}{...}}}}\)

**Moderators:** galactus, Random Variable, sos440

1 post
• Page **1** of **1**

\(\displaystyle \int_{0}^{1}f(x)dx\)

\(\displaystyle f(x) = 1 + \cfrac{x}{x+\cfrac{x^2}{x^2+\cfrac{x^3}{x^3+\cfrac{x^4}{...}}}}\)

1 post
• Page **1** of **1**