Board index Computation of Integrals Integral involving arctan

Integral involving arctan

Post your questions related to Computation of Integrals here.

Moderators: galactus, Random Variable, sos440


Post Fri Mar 17, 2017 1:12 pm

Posts: 1
\(\displaystyle \int_{0}^{1}\dfrac{\arcsin{\sqrt{x}}}{x^4-2x^3+2x^2-x+1}dx \\ = \pi\sqrt{\frac{1+\sqrt{13}}{78}} \log \left(\frac{1+\sqrt{13}+\sqrt{2 \sqrt{13}-2}}{4} \right)+\pi\sqrt{\frac{\sqrt{13}-1}{78}}\tan ^{-1}\left(\frac{\sqrt{5+2 \sqrt{13}}}{3} \right)\)

Return to Computation of Integrals

cron