Board index Computation of Series Series with Gamma

## Series with Gamma

Post your questions related to Computation of Series here.

Moderators: galactus, sos440, zaidalyafey

### Series with Gamma

Fri Aug 12, 2016 9:57 am

Posts: 47

Prove that

$$\sum_{n=0}^{\infty} \frac{\Gamma \left( \frac{n+1}{2} \right)}{n!}=\sqrt{\pi} \sqrt[4]{e} \left ({\rm efri} \left(\frac{1}{2} \right) +1 \right)$$

where $\Gamma$ stands for the Euler's Gamma function and ${\rm erfi}$ is the error function.

### Re: Series with Gamma

Fri Aug 12, 2016 1:41 pm

Posts: 38
\begin{align*} S&=\sum_{n=0}^{\infty}\frac{\Gamma\left(\frac{n+1}{2}\right)}{n!} \\ &=\sum_{n=0}^{\infty}\frac{1}{n!}\left(\int_{0}^{\infty}x^{\frac{n-1}{2}}e^{-x}\text{d}x\right) \\ &=\int_{0}^{\infty}e^{-x}\left(\sum_{n=0}^{\infty}\frac{x^{\frac{n-1}{2}}}{n!}\right)\text{d}x \\ &=\int_{0}^{\infty}e^{-x}\left(\frac{e^{\sqrt{x}}}{\sqrt{x}}\right)\text{d}x \\ &=\int_{0}^{\infty}\frac{e^{\sqrt{x}-x}}{\sqrt{x}}\text{d}x \\ &=2\int_{0}^{\infty}e^{x-x^{2}}\text{d}x \\ &=2e^{\frac{1}{4}}\int_{-\frac{1}{2}}^{\infty}e^{-x^{2}}\text{d}x \\ &=\sqrt{\pi}e^{\frac{1}{4}}\left(1+\operatorname{erf}\left(\frac{1}{2}\right)\right) \end{align*}