Prove that

$$\int_0^\alpha \frac{dx}{\sqrt{1+x^4}}=\frac{3\Gamma\left(\frac{1}{4}\right)^2}{16\sqrt{\pi}}$$

where $\alpha=\sqrt{1+\sqrt{2}+\sqrt{2+2\sqrt{2}}}$.

Board index **‹** Special Functions **‹** Weierstrass P Function Exercise
## Weierstrass P Function Exercise

Prove that

$$\int_0^\alpha \frac{dx}{\sqrt{1+x^4}}=\frac{3\Gamma\left(\frac{1}{4}\right)^2}{16\sqrt{\pi}}$$

where $\alpha=\sqrt{1+\sqrt{2}+\sqrt{2+2\sqrt{2}}}$.

**Moderator:** Shobhit

1 post
• Page **1** of **1**

$$\int_0^\alpha \frac{dx}{\sqrt{1+x^4}}=\frac{3\Gamma\left(\frac{1}{4}\right)^2}{16\sqrt{\pi}}$$

where $\alpha=\sqrt{1+\sqrt{2}+\sqrt{2+2\sqrt{2}}}$.

1 post
• Page **1** of **1**