Board index Special Functions Problem Related to Gauss's Hypergeometric Function

Problem Related to Gauss's Hypergeometric Function

Post your questions related to Special Functions here.

Moderator: Shobhit

Problem Related to Gauss's Hypergeometric Function

Tue May 14, 2013 8:54 am

Posts: 852
Location: Jaipur, India

If $\displaystyle p=\frac{\sqrt{6\sqrt{3}-9}-1}{2}$, then prove that

$\displaystyle _2F_1 \left(\frac{1}{2},\frac{1}{2};1;p^3 \frac{2+p}{1+2p} \right)=\frac{\sqrt{\pi}}{\Gamma^2 \left(\frac{3}{4}\right)\sqrt{6\sqrt{3}-9}}$

Re: Problem Related to Gauss's Hypergeometric Function

Thu May 16, 2013 1:06 pm

Posts: 38
Location: India, West Bengal
ETYUCAN wrote:
If $\displaystyle p=\frac{\sqrt{6\sqrt{3}-9}-1}{2}$, then prove that

$\displaystyle _2F_1 \left(\frac{1}{2},\frac{1}{2};1;p^3 \frac{2+p}{1+2p} \right)=\frac{\sqrt{\pi}}{\Gamma^2 \left(\frac{3}{4}\right)\sqrt{6\sqrt{3}-9}}$

Re: Problem Related to Gauss's Hypergeometric Function

Thu May 16, 2013 1:25 pm

Posts: 852
Location: Jaipur, India

mathbalarka wrote: