Board index Special Functions Proving identities of special functions

## Proving identities of special functions

Post your questions related to Special Functions here.

Moderator: Shobhit

### Re: Proving identities of special functions

Sat Sep 28, 2013 7:02 pm

Posts: 138
Location: North Londinium, UK
Mighty efficient there, RV (as always)!

Not my turn, mind, but just out of interest... Have you tried proving the equivalent canonical product for the Barnes' G-Function (Double Gamma Function)? I'm sure you'd find it a doddle...

$\displaystyle G(z+1)=G(z)\,\Gamma(z)$

$\displaystyle G(z+1)=(2\pi)^{z/2}\text{exp}\left(-\frac{z+z^2(1+\gamma)}{2}\right)\, \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)\text{exp}\left(\frac{z^2}{2k}-z\right)$

More on the Barnes' G-Function here... http://arxiv.org/pdf/math/0308086v1.pdf

### Re: Proving identities of special functions

Thu Oct 10, 2013 6:12 am
Shobhit Site Admin

Posts: 852
Location: Jaipur, India

Problem 11

Show that

$\displaystyle _2\phi_1 \left[\begin{matrix}a,b \\ \frac{aq}{b}\end{matrix}\; ; q;-\frac{q}{b} \right] = \frac{(-q;q)_{\infty}(aq;q^2)_\infty(aq^2/b^2;q^2)_\infty }{(aq/b;q)_\infty (-q/b;q)_\infty}$

where $\displaystyle _2\phi_1 \left[\begin{matrix}a,b \\ c \end{matrix}\; ; q;-\frac{q}{b} \right]$ is the Basic Hypergeometric Series.

Previous

Return to Special Functions